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Software designers use visual models, such as data flow/control flow diagrams or object
collaboration diagrams, to express system behavior in a form that can be understood easily by
users and by programmers, and from which designers can generate a software architecture.
The research described in this paper is motivated by a desire to provide an automated
designer’s assistant that can generate software architectures for concurrent systems directly
from behavioral models expressed visually as flow diagrams. To achieve this goal, an
automated designer’s assistant must be capable of interpreting flow diagrams in semantic,
rather than syntactic, terms. While semantic concepts can be attached manually to diagrams
using labels, such as stereotypes in the Unified Modeling Language (UML), this paper
considers the possibility of providing automated assistance to infer appropriate tags for
symbols on a flow diagram. The approach relies upon constructing an underlying metamodel
that defines semantic concepts based upon (1) syntactic relationships among visual symbols
and (2) inheritance relationships among semantic concepts. Given such a metamodel, a
rule-based inference engine can, in many situations, infer the presence of semantic concepts
on a flow diagram, and can tag symbols accordingly. Further, an object-oriented query system
can compare semantic tags on diagram instances for conformance with their definition in the
metamodel. To illustrate the approach, the paper describes a metamodel for data flow/control
flow diagrams used in the context of a specific software modeling method, Concurrent
Object-Based Real-time Analysis (COBRA). The metamodel is implemented using an expert-
system shell, CLIPS V6.0, which integrates an object-oriented language with a rule-based
inference engine. The paper applies the implemented metamodel to design software for an
automobile cruise-control system and provides an evaluation of the approach based upon
results from four case studies. For the case studies, the implemented metamodel recognized,
automatically and correctly, the existence of 86% of all COBRA semantic concepts within the
flow diagrams. Varying degrees of human assistance were used to correctly identify the
remaining semantic concepts within the diagrams: in two percent of the cases the imple-
mented metamodel reached tentative classifications that a designer was asked to confirm or

Authors’ addresses: K. L. Mills, NIST, 100 Bureau Drive, Building 820, Mail Stop 8920,
Gaithersburg, MD 20899; email: kmills@nist.gov; H. Gomaa, Department of Information and
Software Engineering, Mail Stop 4A4, 4400 University Drive, George Mason University,
Fairfax, VA 22030-4444; email: hgomaa@gmu.edu
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 1049-331X/00/0700–0306 $05.00

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 3, July 2000, Pages 306–337.



override; in four percent of the cases a designer was asked to provide additional information
before a concept was classified; in the remaining eight percent of the cases the designer was
asked to identify the concept.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques—
CASE

General Terms: Design, Experimentation, Measurement

Additional Key Words and Phrases: Software design methods, concept classification systems,
knowledge-based software engineering, semantic data modeling, visual modeling, concurrent
systems

1. INTRODUCTION

Software designers use visual models, such as data flow/control flow
diagrams or object collaboration diagrams, to express system behavior in a
form that can be understood easily by users and by programmers, and from
which designers can generate a software architecture. To generate a
software architecture from such visual models, software designers typically
use an analysis and design method that includes a vocabulary of semantic
concepts that can be expressed through the syntax of visual models. The
research described in this paper is motivated by a desire to provide an
automated designer’s assistant that can generate software architectures for
concurrent systems directly from behavioral models expressed visually as
flow diagrams [Mills 1996; Mills and Gomaa 1996]. To achieve this goal, an
automated designer’s assistant must be capable of interpreting flow dia-
grams in semantic, rather than syntactic, terms. While semantic concepts
can be attached manually to diagrams using labels, such as stereotypes in
the Unified Modeling Language (UML), this paper considers the possibility
of providing automated assistance to infer appropriate tags for symbols on
a flow diagram.

The approach described in this paper is intended to apply to analysis and
design methods where the analysis method explicitly provides semantic
concepts to interpret the analysis model, and where the semantic concepts
can be represented using a visual modeling notation. The approach, de-
scribed here for a specific analysis method and visual notation in the
concurrent, real-time domain, relies upon constructing an underlying meta-
model that defines semantic concepts based upon (1) syntactical relation-
ships among visual symbols and (2) inheritance relationships among se-
mantic concepts. Given such a metamodel, a rule-based inference engine
can, in many situations, infer the presence of semantic concepts on a flow
diagram, and can tag symbols accordingly. Further, an object-oriented
query system can compare semantic tags on diagram instances for conform-
ance with their definition in the metamodel.

The paper is organized as follows. Section 2 describes the motivation for
this research. Section 3 provides an overview of the conceptual architecture
of CODA, a concurrent designer’s assistant. Section 4 discusses the ap-
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proach that CODA uses for semantic interpretation of visual models.
Section 5 describes in detail the design and implementation of the CODA
model analyzer, which classifies syntactic elements on data flow/control
flow diagrams as specific semantic concepts associated with an analysis
and design method. Section 6 describes the application of CODA to the
design of a concurrent system. Section 7 evaluates the results obtained
when CODA was applied to classify analysis models for four different
concurrent designs. Section 8 discusses the approach and its application,
before drawing some conclusions in Section 9.

2. MOTIVATION

Traditionally, visual notations for modeling software structure and behav-
ior have proven quite popular, whether for structured analysis and design
[DeMarco 1978; Yourdon and Constantine 1979], Jackson System Develop-
ment [Jackson 1983], or real-time structured analysis and design [Mellor
and Ward 1986; Ward and Mellor 1985; Hatley and Pirbhai 1988].

The popularity of visual notations has continued to increase as software
analysis and design methods have adopted object-oriented concepts [Booch
1986; 1991; Coad and Yourdon 1991; Rumbaugh et al. 1991]. In fact, the
adoption of the Unified Modeling Language (UML) as a standard for
modeling the structure and behavior of object-oriented software seems to
have firmly established the popularity of visual notations for software
design, as UML encompasses a wide-range of visual models, including class
diagrams, collaboration diagrams, sequence diagrams, statecharts [Harel
1988; Harel and Gary 1996], activity diagrams, component diagrams,
deployment diagrams, and package diagrams [Fowler 1997; Booch et al.
1999; Jacobson et al. 1999; Rumbaugh et al. 1999].

Beyond the design of software, visual languages are being used increas-
ingly to select, compose, and animate computer programs without the need
to resort to textual descriptions or formal languages [Santucci 1996;
Haarslev and Wessel 1996; Puigsegur et al. 1996]. The widespread popular-
ity of visual languages might in part be due to the fact that humans are
naturally visual creatures who can quickly grasp the significance of pat-
terns of symbols drawn on a page. This popularity might also be due to the
fact that diagrams facilitate ready communication among users, analysts,
and designers by providing a simple language around which a range of
discussions can be held. While debunking these and many other unproven
theories regarding visual models, Blackwell notes that “. . . the most
influential reason for the growth of interest in [visual programming]
languages has been the popularity of direct manipulation iconic interfaces
on personal computers” [Blackwell 1996]. Although Blackwell debunks
many theories about the effectiveness of visual languages, we often notice
that programmers who attempt to understand an unknown program,
documented only in source code, resort to constructing diagrams to model
the structure of the design. Whatever their motivating appeal, lacking a

308 • K. Mills and H. Gomaa

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 3, July 2000.



certain semantic rigor, diagrams admit to a range of interpretations based
on various perspectives.

Lately, attempts are being made to combine the simplicity and visual
appeal of diagrams with the rigor of more formal semantics in order to
support automated transformation from one form of visual software model
to another [Boloix et al. 1992; Karimi and Konsynski 1988; Tsai and Ridge
1988; Lor and Berry 1991]. For example, Boloix, Sorenson, and Tremblay
have augmented data flow diagrams with an underlying entity-aggregate-
relationship-attribute (EARA) model, based on set theory, which defines
transformation rules that can convert data flow diagrams into structure
charts. Approaches such as this one result in a deterministic transforma-
tion between diagrams, based on the rules defined. In effect, the rules
define a formal semantics for possible diagrams.

Approaches that define an underlying formal semantics for visual models
have two main shortcomings when applied to software design. First, the
initial designs scratched out in the form of visual models generally include
various degrees of ambiguity. As the design process proceeds, the design
becomes less and less ambiguous until it reaches code that can be success-
fully compiled. Formal semantic models do not generally permit ambiguity
to exist within a design, at least not in a form that can be processed with a
computer program. The approach proposed in this paper, and implemented
within CODA, expects such ambiguity, and the underlying models are
prepared to consult with the human designer as necessary to gain addi-
tional information that might help resolve ambiguities. For inexperienced
designers, CODA includes default rules for resolving ambiguities without
consultation. For experienced designers, CODA can request additional
information needed to clarify ambiguities. When an experienced designer
chooses not to provide the requested information, CODA can still make
default decisions as needed to resolve ambiguity; however, the designer will
be asked to confirm or override default decisions. When the designer
chooses neither to confirm nor override, CODA applies the default deci-
sions.

Second, software design often proceeds through a range of levels of
abstraction as designers consider various aspects of a problem or solution.
Most formal semantic definitions do not share the designer’s view of
multiple levels of abstraction. The approach proposed in this paper permits
a designer to enter semantic concepts into the initial visual model at any of
several levels of abstraction, even mixing levels of abstraction on the same
diagram, and yet still permits the visual model to be analyzed by a
computer program.

3. OVERVIEW OF A CONCURRENT DESIGNER’S ASSISTANT

Figure 1 depicts one view of the architecture for a concurrent designer’s
assistant, CODA, which was the main goal of our research [Mills 1996;
Mills and Gomaa 1996]. The intent of CODA is to provide a designer with
an automated assistant that can help to transform an analysis model,
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typically expressed in some form of flow diagram, into a concurrent
software design, expressed as a set of tasks and modules and the relation-
ships between them. While performing this transformation, CODA also
generates traceability between the analysis model and the software design,
and captures the rationale for the design decisions used to accomplish the
transformation. In addition, CODA can check an analysis model and a
software design for conformance to the constraints imposed by a specific
analysis and design method.

As shown in Figure 1, CODA consists of two main components: a model
analyzer and a design generator. The model analyzer consists of four
knowledge bases: (1) an analysis metamodel that describes relationships
among semantic concepts within a specific analysis method, (2) concept
classification rules that perform inferences on instances of semantic con-
cepts within the analysis metamodel, (3) axioms that define relationships
required and prohibited among semantic concepts in the analysis meta-
model, and (4) information elicitation rules that can be used to obtain
information not readily available from visual representations of the analy-
sis metamodel. For CODA to support a specific analysis method, these four
knowledge bases must be created. In the work discussed in this paper,
knowledge bases were built to support Concurrent Object-Based Real-time
Analysis, or COBRA [Gomaa 1993].

The design generator also consists of four knowledge bases: (1) a design
metamodel that describes relationships among semantic concepts within a
specific software design method, (2) heuristics codified into production
rules that can transform semantic concepts from an analysis metamodel
into semantic concepts within a design metamodel and that can also reason

Fig. 1. Conceptual Architecture for Concurrent Designer’s Assistant, CODA.
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about semantic concepts within a design metamodel, (3) process constraints
to ensure that design decisions progress in the order required by a design
method, and (4) axioms that define relationships required and prohibited
among semantic concepts within the design metamodel. For CODA to
support a specific design method, these four knowledge bases must be
created. In the work discussed in this paper, knowledge bases were built to
support Concurrent Design Approach for Real-Time Systems, or CODARTS
[Gomaa 1993]. While both the model analyzer and the design generator
present interesting challenges, this paper focuses mainly on the model
analyzer, as specified and implemented for COBRA.

4. SEMANTIC INTERPRETATION OF VISUAL MODELS

This section describes the relationship between the syntactic elements and
semantic concepts provided by COBRA, and discusses how these relation-
ships can be represented in a metamodel for COBRA. COBRA helps a
designer to model system behavior as a flow diagram, using the seven
simple symbols shown in Figure 2. When used on a flow diagram, instances
of these symbols can be given a name that relates to a concept in the
problem domain being modeled, and some instances can be given a number
that indicates a hierarchical relationship with other symbols on the dia-
gram. To help develop a flow diagram, the COBRA analysis method
provides a designer with semantic concepts, shown on Figure 3, which can
be used, when reviewing natural-language requirements statements, to
identify the need for elements in a flow diagram. Figure 3 implies that
symbols on Figure 2 can be overloaded with several meanings. For exam-
ple, a terminator can denote a device, a user role, or an external subsystem.
A transformation denotes one among a range of functions or objects. A data
flow can denote a system input or output or a file read or write, while a
two-way data flow denotes an update. An event flow might represent one
among a range of asynchronous stimuli, such as a timer, an interrupt, or a
signal.

Fig. 2. COBRA syntactic elements.
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4.1 Annotating COBRA Symbols with Semantic Tags

In order for the CODA design generator to perform its work, each symbol
on an input flow diagram must be annotated with a semantic tag (similar to
a stereotype in UML) that denotes the meaning of the symbol. For example,
a circle on a flow diagram might be tagged as a device interface object or as
some type of algorithm or function. Based on correct tagging, the design
generator can use heuristics to consider some alternate means of mapping
the circle on the flow diagram to one or more elements in a software
architecture. Before passing an annotated diagram to the CODA design
generator, some means must be used to verify the correctness of the
semantic tags. This was originally the main purpose of the CODA model
analyzer.

Recall from Figure 1 that the CODA model analyzer contains four
components, two of which can be used together to verify the correctness of

Fig. 3. COBRA semantic concepts.
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semantic tags on an annotated flow diagram. One component, a metamodel
for COBRA, provides the semantic tags that can be assigned to symbols on
the flow diagram, as well as the required relationships among those tags.
(We used the COBRA modeling method instead of UML because UML did
not exist when our work began.) A second component, an axiom checker,
examines instances of annotated COBRA models for compliance with the
COBRA metamodel. Further, we found that certain semantic concepts
might be augmented with additional information that the CODA design
generator can use. For example, interrupt-driven input objects might
contain a maximum and expected rate at which interrupts can arrive.
Given this additional knowledge, a third component, an information elici-
tor, can identify semantic concepts that entail added information, and,
when the information is not present, can elicit the necessary data from a
designer. During design of the COBRA metamodel, it became apparent that
the axioms used to define each semantic concept might be converted into
rules through which semantic tags on a diagram could be inferred semiau-
tomatically.

4.2 Inferring Semantic Concepts for Tagging COBRA Models

A fourth component of the CODA model analyzer, the concept classifier,
examines instances of a COBRA flow diagram and attempts to infer the
semantic tags to assign to each symbol. Given that a flow diagram must be
annotated with semantic tags before submission to the CODA design
generator, the concept classifier can relieve a human designer from the
tedious, error-prone task of labeling symbols on the diagram. Further, a
human designer might label a symbol with a high-level semantic concept,
such as ^^device interface object&&, which the concept classifier can convert
to a more specific concept, such as ^^periodic device input object&&. When the
concept classifier cannot make an unambiguous decision, the human de-
signer can be consulted for additional information or to verify a preliminary
inference or to provide a specific semantic tag. The concept classification
knowledge base includes default classification rules that can be used when
a designer cannot provide additional guidance. The addition of the concept
classifier to the CODA model analyzer led to a series of case studies that
attempted to automatically add correct semantic tags to flow diagrams.

5. DESIGN AND IMPLEMENTATION OF THE CODA MODEL ANALYZER

This section describes the technical details underlying the CODA model
analyzer. The model analyzer is implemented with the CLIPS expert-
system shell, and so the design and implementation are closely aligned
because CLIPS provides both object-oriented and rule-based knowledge
representation languages, along with an object-oriented run-time and
query system, and an inference engine that can match against patterns of
objects. By taking maximum advantage of these underlying execution
mechanisms within CLIPS, the implementation of the CODA model ana-
lyzer is accomplished mainly by mapping concepts from a COBRA meta-
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model (described in the next subsection) directly onto CLIPS knowledge
representations. The remainder of the implementation chore requires ani-
mating the CODA model analyzer by selecting appropriate CLIPS execu-
tion mechanisms for the tasks at hand: classifying or verifying concepts,
checking axioms, or eliciting information from the designer. Table I shows
the mapping from design element to CLIPS implementation element. These
design and implementation elements are discussed below.

5.1 COBRA Metamodel

In order to apply semantic tags to the syntactic elements of a flow diagram,
the CODA model analyzer encapsulates a metamodel representing the
semantic concepts and relationships implied by the COBRA analysis
method. A key aspect of the COBRA metamodel includes a concept taxon-
omy [Fikes and Kehler 1985; Lim and Cherkassky 1992], where each child
concept specializes, using an is-a relationship, its parent concept. Figure 4
depicts part of the concept taxonomy. Each concept in the taxonomy is
represented with a rectangle divided into three sections: concept name,
concept attributes (if any), and concept operations. The taxonomy consists
of four main layers, grouped together in Figure 4 with bounding boxes. A
complete specification of the taxonomy appears elsewhere [Mills 1996].

The “Root Elements” layer provides a top for the taxonomy, along with a
few traits that other concepts inherit. The next layer, “Directed Graph
Elements,” represents the concepts contained within directed graphs, on
which flow diagrams are based. The third layer, “Syntactic Elements,”
denotes the symbols that can appear on a flow diagram, and defines the
syntactic compositions allowed among those symbols. The bottom layer,
“Semantic Concepts,” organizes the semantic tags available from the
COBRA analysis method. Note that concepts with italicized names, such as
Node, represent abstract concepts that cannot be instantiated. For this
reason, a flow diagram represented as a COBRA metamodel must be
implemented using concepts taken from among the seven, lowest-level
syntactic elements or from the semantic concepts. For brevity, many
concepts are omitted from Figure 4, as denoted on the diagram with
ellipses.

Table I. Knowledge Representation for Elements of the COBRA Metamodel and the CODA
Model Analyzer
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Fig. 4. The general organization of the taxonomy for the COBRA metamodel.
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Each concept in the taxonomy, along with inheritance relationships, is
represented directly as a CLIPS class, corresponding to a diagrammatic
symbol. For example, consider the CLIPS representation for a Directed Arc,
as shown in Figure 5. The taxonomy concept becomes a class, Directed Arc,
within a CLIPS module, COBRA-Meta-Model. The class inherits two other
classes, Model Element (because all symbols are model elements) and
Named Element (because directed arcs on flow diagrams can be named).
The class contains two attributes, source and sink, to hold the names of the
nodes that the directed arc connects and to indicate the direction of the arc.
The class also contains a single operation, check-axioms, which encapsu-
lates the axioms that define instances of the class. Axioms are discussed in
Section 5.4.

Given a CLIPS representation of the COBRA metamodel, a flow diagram
is translated to a CLIPS representation that can be interpreted by the
CODA model analyzer. For example, consider the small flow diagram
fragment shown in Figure 6. Each of the 10 symbols on the diagram is
represented as an instantiated CLIPS class that corresponds to that
symbol. The only added information is a unique object identifier, such as
[is60], which is required by CLIPS to distinguish between instances of the
same class. For the case studies discussed in this paper, we translated the
flow diagrams manually into CLIPS representation using the technique
shown in Figure 6.

While the taxonomy provides the framework for the COBRA metamodel,
two other forms of knowledge, axioms and classification rules [Hayes-Roth
1985; Michalski 1980], are also required. Figure 7 shows the relationship
between the classes in the taxonomy and the supporting axioms and
classification rules. Private operations in each class identify specific axioms
called by the check-axioms method of the class. All axioms assigned to a
class must be satisfied if an object is a proper instance of the class. More
particularly, a well-formed instance of a class must also satisfy all axioms
for all superclasses in all its inheritance paths. Attached to selected

Fig. 5. CLIPS class definition for directed arc.
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inheritance paths in Figure 7 are classification rules. If a classification rule
is satisfied on a specific inheritance path, then an instance of a superclass
can become an instance of the subclass along that path. Given an instance
of a class representing a syntactic element, such as the “Solid Transforma-
tion” class shown in Figure 7, the CODA model analyzer aims to convert
the element to an instance of a leaf-level class representing an appropriate
COBRA semantic concept. For example, the Brake object shown in Figure
6, input originally as a “Solid Transformation,” is classified as a “Periodic
Device Input Object” class, using four of the six classification rules shown
in Figure 7. Only four rules were used in this example because in cases
where alternate inheritance paths exist between superclasses and sub-
classes, only one of the paths is selected during the actual classification
process, which is covered in Section 5.2.

The COBRA metamodel then consists of three major components: (1) a
taxonomy that organizes, as a web of inheritance relationships, the syntac-
tic elements on a flow diagram and the semantic concepts implied by the
COBRA analysis method, (2) a set of defining axioms assigned to each
concept, and (3) a classification rule assigned to each inheritance path
between syntactic elements and leaf-level semantic concepts. These compo-
nents, when coded with CLIPS knowledge representation techniques, can
be used by the CODA model analyzer to assign semantic tags to syntactic
elements on a flow diagram, to check that all elements on the diagram have
leaf-level semantic tags from the taxonomy, and to determine whether each
tagged element on a flow diagram satisfies the appropriate defining axi-
oms. The following paragraphs describe how these functions are achieved.

5.2 Classifying Concepts

CLIPS includes an inference engine that can perform pattern matching on
instances of CLIPS classes that are declared to be pattern-reactive. Since
every class in the COBRA metamodel was declared pattern-reactive, in-

Fig. 6. Example CLIPS representation for a flow diagram.
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Fig. 7. Relationship between taxonomy classes, axioms, and classification rules.
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stances of those classes can be collected together into a facts base accessible
to the CLIPS inference engine. In addition, the classification rules designed
for the COBRA metamodel can be transformed into CLIPS production rules
and then provided to the inference engine as a rule base. Figure 8 shows
how this approach was used to implement the COBRA concept classifier
within the CODA model analyzer.

First, the classification rules from the COBRA metamodel are encoded
into CLIPS rule syntax and then partitioned into four rule bases. The Arc
Classification partition contains 23 rules that classify most of the solid and
dashed directed arcs, all terminators, and a few transformations, as shown
under Phase One Classifications in the fact base portion of Figure 8. As
shown at the top of Figure 8, an experienced designer will be queried
regarding the identity of terminators on the flow diagram; however, the
classification rules make assumptions whenever the designer cannot pro-
vide useful guidance. Three classes of concepts (Solid Transformation,
Device Interface Object, and Data Flow) might prove unclassifiable by the
first rule partition, and so must be deferred for a later partition.

The second partition, Transformation Classification, contains 34 rules
that classify the bulk of the solid transformations on a flow diagram
without any interaction with the designer. The set of concepts that can be
classified by the second partition is given under Phase Two Classifications
in the facts-base portion of Figure 8. The few residual elements requiring
further classification after the second partition consist of ambiguous data-
flow pairs and ambiguous functions, whether triggered or aperiodic.

The third partition, Stimulus-Response Classification, interacts with an
experienced designer to determine which of each pair of counter-directed
data flows is activated first (Stimulus), and which is sent in reply (Re-
sponse). Of course, such data flows can also be completely independent.

The fourth partition interacts with an experienced designer to resolve
any ambiguities remaining when attempting to classify Solid Transforma-
tions as functions. In some cases, the classification rules cannot determine
whether a function operates independently or under direction of another
function. Information provided by the designer can help to resolve such
ambiguities. For example, the designer might know something about the
time taken to perform a function, or might know whether another function
must suspend pending input from a connected function. Whenever the
designer is not experienced or cannot provide help, the classification rules
make default assumptions.

Two other issues are worth noting. First, the taxonomy was designed so
that each rule is derived from one inheritance path. Because the taxonomy
includes multiple inheritance, more than one path may be active simulta-
neously; however, once a rule fires choosing one of the paths, the competing
rules on the unchosen paths will no longer be active because their patterns
no longer match the facts. Second, while in most cases the objects input to
the facts base correspond to syntactic elements on a flow diagram, the rules
are devised so that input objects may also be partially classified by the
designer. This allows a designer to work with semantic concepts at mixed
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Fig. 8. CLIPS implementation of the concept classifier within the model analyzer.
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levels of abstraction, and yet the model analyzer can still classify the
concepts more specifically.

As Figure 8 shows, CLIPS objects representing the syntactic elements of
a flow diagram (e.g., as given earlier in Figure 6) are loaded into a CLIPS
facts base, and the inference engine is invoked in four phases, one for each
partition of the rule base. At the close of each phase, the facts base has
been updated by the inference engine, based on actions from the rules that
fired during the phase. Figure 9(a) gives a visual representation of some
CLIPS objects loaded into the facts base. The objects shown in Figure 9(a)
correspond to the flow-diagram fragment shown earlier in Figure 6, but the
classification of each object is denoted with semantic tags enclosed in
guillemets, ^^Solid Transformation&& for example, rather than with the
CLIPS syntax shown in Figure 6. Figure 9(b) shows the changes made to
the input flow-diagram fragment as a result of executing the first classifi-
cation phase. Notice that concept classification has moved from the syntac-
tic to the semantic for 9 of the 10 objects. The data store object, Desired
Speed, was not reclassified because the input notation includes a symbol
for data store, which is a leaf-level concept in the COBRA taxonomy. At the

Fig. 9. Monitoring changes to a flow-diagram fragment during concept classification.
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end of this first phase of classification all but two objects have been
reclassified as leaf-level concepts in the taxonomy. The Brake object has
been partially classified, as a ^^Device Interface Object&&, while the Select
Desired Speed object remains at the syntactic level, ^^Solid Transforma-
tion&&. Figure 9(c) shows the two changes made to the flow-diagram
fragment as a result of rule executions during phase two. The Brake object
has now been classified as a leaf-level concept, ^^Periodic Device Input
Object&&, while the Select Desired Speed object has been further classified
as a ^^Triggered Function&&. The flow diagram does not change during the
third classification phase. As shown in Figure 9(d), a final classification
occurs during the fourth phase of classification. In this case, the Select
Desired Speed object is classified as ^^Triggered Synchronous Function&&, a
leaf-level concept in the taxonomy. To summarize, a CLIPS object that
enters the classification process as a syntactic element will typically
undergo several reclassifications before finally being classified as a leaf-
level concept in the COBRA concept taxonomy, described earlier in Section
5.1. The total number of rule firings required to classify an entire flow
diagram depends upon the number and type of elements in the diagram
and on the degree of classification present prior to invoking the concept
classifier.

To understand in detail how classification rules work, we consider now
one specific rule, the rule that reclassifies a ^^Device Interface Object&& as a
^^Periodic Device Interface Object&&. Note that this rule is contained in the
second partition of the concept classification rules. Figure 10 provides a
conceptual view of the rule. The rule antecedent detects a pattern relating
a node, ^^Device Interface Object&&, to an arc, ^^Timer&&, and detects the
absence of an interfering arc, ^^Interrupt&&. The rule consequent then
reinstantiates the node with a new classification, ^^Periodic Device Inter-
face Object&&, records the fact that the classification rule fired, and then
deletes the old object because the new object has subsumed all information
formerly held by the old object. Each rule partition contains a set of rules
that appear similar to the one discussed here. While executing a given rule
partition, the CLIPS inference engine simply activates all rules with
antecedents that match object patterns in the facts base, selects one
activated rule for execution, and then executes the selected rule. This cycle

Fig. 10. Example COBRA metamodel classification rule.
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continues until no rules in the partition have antecedents that match object
patterns in the facts base.

Once all rule partitions have been executed, each CLIPS object in the
facts base should be classified as one of the leaf-level semantic concepts in
the taxonomy. To ensure this, each object inherits an operation, check-
classification, from the Model Element class. When invoked, the operation
determines whether or not its own instance can be used to create a
subclass. When classification is complete, then no object in the flow
diagram should be capable of being “subclassed.”

5.3 Eliciting Information

Once the flow diagram is classified, the designer might need to specify
some information about input rates and timer periodicity in order to guide
design decisions made by the design generator. Immediately following
concept classification, the model analyzer elicits the needed information
automatically from the designer. For every type of flow-diagram element
that requires additional information, the model analyzer can determine if
the information has been supplied and, if not, can prompt the designer for
the information. To implement this process, the model analyzer uses the
CLIPS object-oriented query language. For example, a CLIPS function,
elicit-timer-periods, searches the facts base for all objects of type “Timer”
that have no period assigned. For each such object, the designer is
prompted with the identity of the object and is asked to provide a positive
value for the period attribute. Once a proper period is provided, the object
is updated appropriately, and the elicitation is logged in the design record.
After all needed information has been supplied for all appropriate elements
in the flow diagram, then the facts base should be ready for immediate
input to the CODA design generator. The facts base can be saved to a file
for later use by the design generator; however, to ensure that the flow
diagram is well formed, the designer must verify that all axioms are
satisfied for each object on the diagram. The following paragraphs describe
the implementation of axiom checking for the model analyzer.

5.4 Checking Axioms

Recall from Figure 7 that each class in the COBRA metamodel taxonomy
can be augmented with axioms that must be satisfied. Any such axioms
that apply to a class are encapsulated as private operations within a public
operation, check-axioms. For example, consider the class “Periodic Device
Interface Object,” which must satisfy two axioms: “One, And Only One,
Timer” and “No Interrupt.” Each axiom is specified using the CLIPS
object-oriented query language. The first axiom works in two steps. First,
the facts base is searched for all instances of type “Timer,” where the sink
of the instance corresponds to the object being evaluated. Second, the
resulting set is tested to ensure it contains only one member. If not, then
an axiom violation is reported. The second axiom works in a single step by
searching to find any instance of type “Interrupt,” where the sink of the
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instance corresponds to the object being evaluated. If any such instance is
found, then an axiom violation is reported.

To check whether or not a flow diagram satisfies all axioms, the designer
simply invokes a check-axioms function from the CODA user interface.
The function loops through each object that composes the flow diagram and
calls the check-axioms operation. The CLIPS object-oriented run-time
system provides the execution algorithm for checking every axiom embed-
ded in each class within the inheritance path of an object. The algorithm
works as follows.

The top-level class in the taxonomy, “Model Element,” contains an empty
primary method that implements check-axioms. When the check-axioms
operation is called on any object, it is this primary method that is invoked.
Every other subclass of the class “Model Element” contains an after method
also called check-axioms. Any relevant axiom-checking queries are em-
bedded within these after methods. Once the primary method, check-
axioms, completes, the CLIPS run-time works its way down the inheri-
tance hierarchy for an object. In each subclass of “Model Element” the after
method called check-axioms is executed. Within each after method, every
CLIPS query is performed in turn. In this manner, once the final check-
axioms after method completes execution for the lowest-level class that
composes an object, all the axioms pertaining to an object are evaluated,
and the designer is notified of any violations. Of course, if the concept
classifier was invoked successfully, then all axioms will be satisfied, and no
violations will be reported.

5.5 User View of the Model Analyzer

While the previous discussion covered internal design and implementation,
the interaction between the user and the model analyzer remains to be
discussed. Two modes of interaction are supported. For the self-declared
inexperienced designer, CODA leads the designer step-by-step through the
process of loading the objects corresponding to a flow diagram, classifying
the concepts and providing additional information, and checking for proper
classification and to ensure that all axioms are satisfied. Alternatively, an
experienced designer is presented with a set of commands that can be
invoked individually whenever the designer wishes. For each command
that can potentially alter the flow diagram, CODA checks that relevant
constraints are satisfied when a designer invokes the command. For
example, if a designer attempts to generate a design before a flow diagram
has been properly classified, then CODA will remind the designer that
more preparation is needed. Figure 11 gives the commands that the model
analyzer makes available to an experienced designer. The design generator
provides additional commands.

6. USING CODA TO DESIGN A CRUISE-CONTROL SYSTEM

The CODA model analyzer was applied to the flow diagram for an automo-
bile cruise-control and monitoring system. The entire flow diagram for this
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system consists of 58 nodes (33 transformations, 12 terminators, and 13
data stores) and 112 arcs (69 data flows and 43 event flows). Figure 12
shows only a fragment taken from the larger flow diagram. Two data flows,
labeled Current Speed, come from a data store omitted from the fragment,
and the four event flows classified ^^Timer&& come from a system terminator
also omitted from the fragment. The flow-diagram fragment is annotated
with information inferred by the CODA model analyzer or elicited from the
designer. The annotations, set off in italicized print, are shown in two
forms: guillemets enclose semantic tags, and square brackets enclose
supplementary information. Symbols, defined in Table II, indicate the
source of the annotations. The example in Figure 12 uses all symbols except
for the ? symbol.

6.1 Analyzing the Flow Diagram Model

Classifying concepts for this flow diagram requires a dialog between CODA
and the designer; however, CODA can make most of the classification
decisions without consulting the designer. At startup, CODA prompts for
the designer’s level of experience. When the designer is inexperienced
CODA makes all decisions without consulting the designer. When the
designer is experienced, as in this case study, CODA consults the designer
from time to time, where such consultation might prove advantageous. In
this case, only two consultations were used. First, the designer, when asked
about the nature of the terminators in the model, indicates that all
terminators are devices. Second, during the latter stages of classification,
CODA discovers six data transformations (none included in Figure 12) that
appear to be synchronous functions. Knowing the designer to be experi-
enced, CODA presents each of these tentative classifications to the de-
signer for confirmation.

After completing concept classification, CODA notes that some of the new
semantic tags assigned to symbols on the flow diagram require the designer
to supply additional information. For example, in this case study, 16 event
flows represent timers (four shown in Figure 12). CODA enables the
designer to provide a positive period for each timer. After finishing concept
classification and information elicitation, CODA can verify that each sym-
bol on the flow diagram is properly tagged and that each tagged symbol
satisfies its definition in the COBRA metamodel. A full treatment of this

Fig. 11. CODA model analyzer commands accessible to an experienced designer.

Inferring Semantic Concepts from Visual Models • 325

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 3, July 2000.



Fig. 12. Flow-diagram fragment from a COBRA model of a cruise control system.
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case study, including a complete, annotated flow diagram and multiple
concurrent designs, appears elsewhere [Mills 1996]. To keep this case study
brief, only the fragment in Figure 12 is shown here.

6.2 Generating a Concurrent Design

The model analyzer provides a front-end to a design generator that encodes
heuristics from a specific design method, Concurrent Design Approach to
Real-Time Systems (CODARTS) [Gomaa 1993]. The design generator trans-
forms a COBRA flow diagram into a concurrent design by implementing the
four steps used in CODARTS: (1) task structuring, (2) task interface
definition, (3) module structuring, and (4) task and module integration.
Figure 13 provides an overview of the design generated by CODA from the
flow-diagram fragment shown in Figure 12. Please note that some portions
of the design correspond to symbols omitted from Figure 12. Specifically,
the task, Control Auto Speed, encapsulates transformations that maintain,
increase, and resume speed, while Figure 12 shows only the speed mainte-
nance transformation. Similarly, while the Current Speed data store is
omitted from Figure 12, Figure 13 contains a module that corresponds to
the data store. Several examples will serve to illustrate how the CODA
design generator depends upon the semantic tags added by the model
analyzer.

As an example of task structuring, CODA creates a single periodic input
task, Monitor Auto Sensors, to poll both the Brake and Engine objects from
Figure 12, because both transformations are tagged ^^Periodic Device Input
Object&& and their associated ^^Timer&& event flows have identical periods,
[Period .1 secs]. As an example of task interface definition, CODA creates a
message queue, Cruise Control Events, to hold asynchronous events flows,
tagged ^^Signal&&, sent from several other tasks to the Control Cruising
task. A message queue is chosen because the destination task contains the
receiving transformation Cruise Control, tagged ^^Control Object&&, which
hides an embedded finite-state machine that must not miss any events and
that requires the order of the arriving events to be preserved. As an
example of module structuring, CODA forms a data abstraction module,
Desired Speed, with three operations: Select, Clear, and Read. CODA

Table II. Symbols Used to Annotate Flow Diagrams
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generates this module from six diagram symbols shown in Figure 12: one
^^Data Store&&, Desired Speed, two transformations, Clear Desired Speed
and Select Desired Speed, tagged ^^Triggered Synchronous Function&& and
two data flows tagged ^^Store&& and one tagged ^^Retrieve&&. As an example
of task and module integration, CODA places the Desired Speed module
outside any task, because the module is shared by two tasks, Control
Cruising and Control Auto Speed. In addition, CODA designates that the
Select and Clear operations are invoked by Control Cruising, while the
Read operation is invoked by Control Auto Speed. CODA makes these
decisions by simultaneously examining the data flow model, the evolving
concurrent design, and the relationships among elements on both. Details
describing the internal operation of the CODA design generator appear
elsewhere [Mills 1996; Mills and Gomaa 1996].

7. EVALUATION

The CODA model analyzer for COBRA was applied to four real-time
systems modeled using the visual notation shown earlier in Figure 2. In

Fig. 13. CODARTS design generated from the flow diagram in Figure 12.
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addition to the Automobile Cruise-Control and Monitoring System, just
discussed in the preceding section, these systems included a robot control-
ler [Gomaa 1993], an elevator control system [Gomaa 1993], and a remote
temperature sensor [Nielsen and Shumate 1987; 1988].

7.1 Summary of Results

Table III presents an overview of the classification results across all case
studies. For conciseness, the syntactic elements from Figure 2 are repre-
sented in five rows within Table III. Row two, Transformations, includes
both data and control transformations; row seven, Data Flows, includes
both unidirectional and bidirectional data flows. Row one of Table III
represents all nodes on all flow diagrams; row five represents all arcs; and
row eight represents all elements (that is, nodes plus arcs). The first
column in Table III simply gives the total number of each type of element
that appears on the flow diagrams in the case studies; specifically, the
case-study diagrams contained 358 elements as follows: (1) 125 nodes of
which 79 were transformations, 28 were terminators, and 18 were data
stores and (2) 233 arcs of which 91 were event flows and 142 were data
flows. The remaining five columns represent the manner in which classifi-
cation is achieved for the elements represented by each intersecting row. A
review of the last row indicates the degree of success achieved when the
CODA model analyzer is employed against the flow diagrams for the four
case studies. As shown in columns Directly Represented and Inferred
Automatically, CODA succeeded without help in classifying about 86% of
the elements in the flow diagrams. Where no human assistance is avail-
able, CODA makes default decisions that would have proven accurate in all
but one of the 358 classification decisions comprising the four case studies.
CODA achieves this success by invoking default rules that take reasonable
classification decisions in the absence of additional guidance. This ability to
make effective classifications without human intervention allows the
CODA design generator to be used even though human assistance is
unavailable or unwanted. For the case studies reported in this paper,
human assistance was available and provided.

As shown in the last column of Table III, the designer provided the
classification for terminators, 8% of the elements in the case studies. Cases

Table III. Classifications Over All Models for the Case Studies
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worth considering in detail involve those 2% where CODA’s classification
was inferred tentatively but referred to the designer for confirmation and
those 4% where CODA’s classification occurred only after the designer
supplied additional information. In these cases, a large difference exists
between the classification of arcs, where 99% are classified without help,
and the classification of transformations, where only 75% are classified
without help.

7.2 Problems Classifying Data Flows

Only two data flows, from among the 233 arcs considered in the case
studies, were classified with help from the designer. Both of these appear
in the same flow diagram; in fact, the two data flows are related. In this
situation two data transformations exchange data flows with each other.
CODA cannot determine which of these two data flows, if either, is sent in
response to the other; therefore, the designer must be consulted. The
designer should know, or be able to determine from the pseudocode associ-
ated with each data transformation, whether one of the data flows is sent
in response to the other. Of course, the designer might not know this
information, so CODA is prepared to make a default decision. Only in
situations such as this one will CODA’s automated classifier need to
consult the designer to classify arcs on a flow diagram. Thus, the perfor-
mance of the automated classifier against arcs will depend on the number
of these cases that exist in a given diagram. The performance of CODA’s
automated classifier against transformations appears less effective.

7.3 Problems Classifying Transformations

Table IV provides a breakdown of transformation classifications by case
study. For the four case studies, CODA could classify definitively 75% of
the transformations, could classify tentatively 10%, and could classify the
remaining 15% only after hints from the designer. All control objects are
inferred automatically from their syntax.

CODA’s performance is much better in three of the case studies: automo-
bile cruise control, robot controller, and elevator control system. Consider-
ing only these three cases, 83% (54/65) of transformations were classified
automatically; 11% (7/65) could be classified tentatively, while only 6%
(4/65) required hints in order to make a classification. For the remote
temperature sensor, CODA’s classification performance proved less effec-

Table IV. Classification of Transformations by Case Study
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tive. The data flow diagram for the remote temperature sensor, as provided
by Nielsen and Shumate [1987; 1988], was developed using structured
analysis as the design method. As applied in this case, the design method
did not include semantic concepts for interpreting the flow diagrams. Even
though the analysis model for the remote temperature sensor was devel-
oped using only a subset of the COBRA syntax, and without using the
semantic concepts included in COBRA, the COBRA model analyzer, work-
ing together with the designer, was still able to produce a semantic
classification of the syntactic elements used in the flow diagram. Even
without interacting with the designer, and thus using only its default
classification rules, the CODA model analyzer would have reached the
same classification decisions for all but one of the elements included on the
flow diagram for the remote temperature sensor application. The following
paragraphs discuss and analyze those situations where CODA’s model
analyzer for COBRA requested the designer to confirm tentative classifica-
tions or to provide assistance with classification.

7.3.1 Tentative Classifications. In the case studies, CODA tentatively
classified eight transformations, each involving the same type of situation.
Whenever CODA encounters a function on a flow diagram such that the
function sends data only to data stores or passive device-interface objects,
or to both, then, if the function is not classified otherwise, CODA tenta-
tively identifies the function as synchronous. This tentative classification
assumes that, for real-time systems, updating data stores and writing to
passive devices is generally a fast operation that can be completed atomi-
cally. This assumption is usually correct. In some situations, however, an
operation might take long enough that the designer chooses to view the
function as asynchronous. In the particular case studies covered in this
paper for example, the designer confirms the tentative classification in
seven of the eight cases. In one case, occurring within the remote tempera-
ture sensor application, the designer overrides CODA’s tentative classifica-
tion where a function updates a data store. The designer overrides CODA
based on application-specific knowledge that the data store is large enough,
or that the update algorithm is time-consuming enough, to warrant asyn-
chronous processing. This information is not available to CODA but might
be available to the designer. When the designer does not know whether to
override CODA’s tentative decision, then the decision stands.

7.3.2 Assisted Classifications. In some situations CODA recognizes
that additional information might be available that can help make a more
accurate classification. In these situations, represented in the last column
of Table IV, CODA consults the designer to see what other information
exists. Lacking additional information, CODA makes a default classifica-
tion. Table IV indicates 12 instances among the case studies where the
designer is consulted to help classify a transformation. These instances
represent two general situations. The first situation occurs when a function
is triggered by a control transformation, yet the triggered function receives
input data from some other transformation. In situations of this type,
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CODA recognizes that the triggered function might not be able to execute
at the triggering state-transition because the input data might be unavail-
able. The designer is consulted on this question, and CODA then makes the
best classification based upon any additional information provided. The
second, and more frequent, situation occurs when a function receives input
from only a single source, or the same input from multiple sources. In such
situations, CODA recognizes that the function might be classified as either
a synchronous or asynchronous function depending upon the execution time
required. After consulting the designer, CODA makes the best classifica-
tion based on the information available. Had no human assistance been
available, CODA’s default decisions would have proven accurate in all but
one of the 79 transformation classifications reported in Table IV.

7.4 Automated Design Generation

In large part, the effectiveness of CODA’s model analyzer can be evaluated
based on the results produced by CODA’s design generator. The design
generator was used to automatically generate 10, distinct, concurrent
designs for the preceding four real-time systems, modeled as flow diagrams
[Mills 1996]. Multiple designs were generated for each system to test the
ability of CODA’s design generator to adapt to variations in the intended
target environment. Of the 1,568 CODARTS design decisions required to
generate the 10 designs, 1,524, or 97%, were taken without human assis-
tance. The effectiveness of CODA’s design generator derives in large
measure from CODA’s model analyzer, which creates the semantic view
from COBRA needed to effectively apply the CODARTS heuristics encoded
within CODA’s design generator.

8. DISCUSSION

The approach described in this paper can be applied to assist designers in
the creation of concurrent designs. A tool such as CODA could be embedded
as a component in a computer-aided software engineering (CASE) tool.
Most CASE tools enable a designer to enter flow diagrams and structure
charts, or other visual models of a software design; however, the process of
creating the software design from the flow diagrams must be performed by
a human designer, outside the CASE tool and without automated assis-
tance. Where a component such as CODA is available, a designer could
enter a flow diagram into a CASE tool and then invoke automated assis-
tance to generate a design. Such automation can capture design decisions
and rationale and can maintain traceability between elements on the flow
diagram and components in the design. Beyond assisting designers, a tool
like CODA can also be used to train novice software designers. For
example, novice designers could compare their models and designs to the
results produced by CODA for the same problems. In addition, since CODA
captures design rationale, including a detailed history of the design deci-
sions made for every element in an analysis model and a design, novice

332 • K. Mills and H. Gomaa

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 3, July 2000.



designers could study the decisions made by CODA as an aid to learn
analysis and design methods that have been automated within CODA.

While the knowledge-based approach embodied in CODA was used to
automate the transformation of COBRA visual models into CODARTS
designs, the approach should be applicable to a range of software design
methods that model system behavior using visual notations and accompa-
nying textual descriptions. The results obtained for COBRA indicate that
the classification by CODA proves more effective when the model analyzer
encounters models constructed using the semantic concepts provided by
COBRA; however, acceptable results were still obtained when the COBRA
model analyzer was applied to a model developed using structured analy-
sis, which does not use the COBRA semantics. This indicates that the
approach described in this paper works better with an analysis method
that provides semantic concepts, where each transformation has a specific
role in the model, over a method that only provides syntactic concepts.
CODA assumes the existence of semantic concepts in order to classify
syntactic symbols on a diagram.

Increasingly, software analysis and design methods that use visual
notations are also including an underlying semantic model that can be
exploited using the approach outlined in this paper. For example, consider
the Unified Modeling Language (UML), which includes an underlying
metamodel to provide some semantic foundation for its visual models
[Fowler 1997; Booch et al. 1999; Jacobson et al. 1999; Rumbaugh et al.
1999]. The UML visual models include a number of diagrams: class
diagrams, collaboration diagrams, sequence diagrams, statecharts [Harel
1988; Harel and Gary 1996], activity diagrams, component diagrams,
deployment diagrams, and package diagrams. UML defines each diagram
visually with symbols from an underlying UML metamodel. Aside from
providing some semantics for each diagram, the UML metamodel provides
a primary means of extending the UML through stereotypes. Stereotypes
can be used as a tag assigned to UML elements that can be extended. For
example, a UML Actor is actually a UML Class with an assigned stereo-
type, ^^Actor&&. By arranging stereotypes in an inheritance hierarchy and by
permitting stereotypes to exhibit relationships with other stereotypes and
UML elements, a semantic metamodel emerges for UML and for extensions
to UML. Oddly, for the basic diagrams defined by UML, the metamodel
exhibits one major omission: few semantic relationships are defined among
the various diagrams. Overcoming this omission would increase the power
of UML semantics.

The semantic concepts discussed in this paper appear quite similar in
intent to stereotypes within the Unified Modeling Language (UML). A
taxonomy of UML stereotypes, including defining axioms, can be devised in
a form similar to that depicted in this paper for the COBRA concept
taxonomy. Rules could then be formulated for attempting to classify UML
model elements against the taxonomy of stereotypes. In addition, UML
model elements labeled with stereotypes by a designer could be evaluated
automatically against a relevant hierarchy of defining axioms. Model
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elements with associated stereotypes could also trigger the automatic
elicitation of information required to support later phases of the software
design process. Once a UML model is properly labeled with stereotypes and
augmented with additional information, the CODARTS design heuristics
encoded within CODA’s design generator could be used to produce a
concurrent design from a UML model.

One UML-based analysis and design method that provides a designer
with semantic concepts is known as COMET, the Concurrent Object Mod-
eling and Architectural Design Method [Gomaa 2000]. The object-structur-
ing criteria provided by COMET are an extension of those provided by
COBRA, as are the classification of external classes (terminators in
COBRA). The COMET analysis method uses UML stereotypes to capture
semantic concepts, such as ^^device interface&& object or ^^state dependent
control&& object. The similarities between the COMET method and COBRA
suggest that the approach should also work with UML-based design meth-
ods in which the UML notation is supplemented with semantic concepts
that exploit the stereotype concept included within the UML metamodel.
While providing an underlying foundation for the semantics of UML
diagrams, today the UML metamodel goes largely unexploited because few
automated tools have been built to check instances of UML models against
the metamodel. Such checking could determine when human analysts and
designers have erred during stereotype assignment. In fact, this serves to
illustrate the original motivation for the work reported in this paper.

9. CONCLUSIONS

In this paper we described a knowledge-based approach to infer the
presence of semantic concepts from visual models of system behavior. The
approach represents knowledge about an analysis and modeling method in
the form of a metamodel, consisting of a concept taxonomy and supporting
classification rules and axioms. To illustrate the approach, the paper
described a metamodel for a specific modeling method, COBRA, and then
showed how that metamodel was implemented with CLIPS to provide a
model analyzer embedded within CODA, a concurrent designer’s assistant.
The paper also described how a design generator embedded within CODA
can use the results from the model analyzer to transform a flow diagram
into a software architecture for concurrent systems. The approach appears
applicable to other visual modeling methods, such as UML, used widely by
software designers.

The approach was evaluated by applying CODA to analyze data flow/
control flow models for four real-time systems. For the four systems, CODA
inferred, automatically and correctly, the existence of 86% of all semantic
concepts within the flow diagrams. Varying degrees of human assistance
were used to correctly identify the remaining semantic concepts within the
diagrams: in two percent of the cases CODA reached tentative classifica-
tions that a designer was asked to confirm or override; in four percent of
the cases a designer was asked to provide additional information; in the
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remaining eight percent of the cases, all involving terminators, the de-
signer was asked to identify the semantic concept. When providing assis-
tance, a human designer consults the textual description accompanying the
visual model for each system. Using the semantic interpretation provided
by the CODA model analyzer, the CODA design generator proved very
effective. During the generation of 10 distinct designs for the four case
studies, the CODA design generator made 97% of all design decisions
without consultation.

The CODA approach can be used to assist in generating software designs,
and as a tool to help inexperienced designers understand the decisions that
need to be made when designing a real-time system. Although demon-
strated here within a real-time domain, the approach can be applied to
other software design domains, e.g., electronic commerce. To allow this, the
analysis method for the domain must explicitly provide semantic concepts
used to interpret the analysis model, and to label the visual modeling
notation. The design method must include rules or heuristics, which can be
codified, for mapping from an analysis model to a design model.
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